玻璃钢环保废气除臭设备:
各种除臭技术也都相继在研发、应用、进展当中,而生物除臭作为一种新型绿色环保技术以其经济,实效,操作性强的优点而被大力推广。生物除臭主要是利用微生物除臭,通过微生物的生理代谢将具有臭味的物质加以转化,使目标污染物被有效分解净化,以达到恶臭的治理废气目的。
生物除臭的基本原理是利用微生物把溶解于水中的恶臭物质吸收于微生物自身体内,通过微生物的代谢活动使其降解的一种过程。被作用物终被微生物分解为无机酸,形成不利于腐败微生物生活的酸性环境,并从根本上降解分解时产生恶臭气体的物质。
微生物除臭可分为三个过程:恶臭气体的溶解过程,即由气相转移到液相;水溶液中恶臭成分被微生物吸收,即溶于水中的臭气通过微生物的细胞壁和细胞膜被微生物吸收,而不溶于水的臭气先附着在微生物体外,由微生物分泌的细胞外酶分解为可溶性物质,再渗入细胞;进入微生物细胞的恶臭成分作为营养物质为微生物所分解、利用,使污染物得以去除。
湿度、温度和pH值
为了给生物滤床中微生物的正常生理活动提供良好的环境,保证系统较高的净化率,必须合理 控制滤床的湿度、温度和pH值。首先,生物滤床的湿度需要根据要求通过控制循环液流量来进行调节,在实际工艺运行中需结合不同的填料、菌种来控制适当质量分数的表面水分,一般情况下 滤床上填料的湿度控制在40%~60%。
填料
填料对生物滤床的长期影响效应可以应用填料的比表面积和孔隙率两个参数来衡量。一般来 说,填料的比表面积越大,则气液传质界面面积越大,同时生物膜表面的液膜厚度也越小,液膜传质阻力也越低,终生化处理净化效率越高。而当填料的比表面积一定时,孔隙率越大,则气体的流通截面积越大,气体在填料内的实际流速越小,停留时间越长,后气体的净化效率则越高。但是孔隙率增大也会造成滤床内的有效传质面积减小,传质阻力随之增加,去除率降低。因此在综合考虑填料比表面积的前提下,生物滤床填料的孔隙率应控制在佳范围。
设备腐蚀处理
由于污水池废气中含有氨、硫化氢、苯系物等 具有腐蚀性的气体,对系统设备中油水分离器滤芯、洗涤塔和一级生物除臭装置的喷头等经常会造成腐蚀,导致设备无法正常使用,使臭气物质净化效果下降。
玻璃钢环保废气除臭设备:
生物除臭应用范围:城市污水站(泵站臭气、预处理臭气、污泥处理臭气);垃圾处理厂(收集站臭气、分选车间臭气);涂料厂除臭/异味;塑料、橡胶厂生产废气;饲料加工废气;食品饮料厂异味;制药企业除臭/异味;生物除臭的主要方法根据微生物在除臭作用中的存在形式,处理方法主要分为生物过滤法和生物吸收法,生物膜除臭技术正是结合了这两种方法,可以有效的去除污水处理厂等恶臭物质。
废水处理过程中产生的气味多为有机化合物,主要成分为碳、氮、硫等元素,如低分子脂肪酸、胺、醚、卤代烷、脂肪族、芳香族、杂环类等。它们都含有活性基团,容易发生化学反应,尤其是氧化反应。活化基团氧化后,气味消失。
化学除臭
利用气味成分与化学药液主要成分发生不可逆的化学反应,生成新的无臭物质,并根据气味成分的不同需求选择相应的化学药品。主要方 法有空气氧化法、化学氧化法、洗涤-吸附法(湿式吸收氧化法)、吸附-氧化法等。
生物除臭
指微生物将臭气中的有机污染物降解或转化为无害或低危害物质的过程。主要方法有:生物过滤、土法、填料塔生物除臭等。
离子除臭法
当空气通过高能离子除臭设备时,氧气分子与发生器发出的高能电子碰撞,从而分别形成带正电荷和负电荷的氧离子。它们具有很强的正负离子活性,经过一系列反应,含有C、H、S元素的化合物终会生成CO2、H2O、SO2等小分子化合物,不会产生二次污染物。
同时能有效破坏空气中细菌的生存环境,降低室内空气中细菌的浓度。离子与空气中微小的固体颗粒碰撞后,给颗粒充电并产生团聚效应,使得传统的过滤方法无法通过自身重力对颗粒进行捕捉或充电并产生团聚效应,从而有效破坏了细菌的生存环境,降低了室内空气中细菌的浓度。
真菌生物反应器主要依靠真菌的作用去除臭气中的疏水性或水溶性差的物质。真菌通常具有菌丝,增大了菌体与周围环境接触的表面积。真菌具有坚硬的细胞壁,可在较干燥的环境中生长,水溶性差的物质能够直接与真菌接触并被降解。
微生物的降解作用是以多种微生物(一般是细菌、真菌、酵母菌)降解不同化合物的能力为基础的。
臭气中的污染物是多样而复杂的,散发臭味的物质可分为:含硫化合物(如硫化物、硫醇类),含氮化合物(如氨、胺类),低级脂肪酸(如乙酸)等。对于水溶性好的污染物,可利用繁殖快的细菌进行降解。
对于难溶于水的污染物,可用真菌降解。细菌一真菌复合式生物除臭反应器,将细菌与真菌复合,可以同时去除臭气中的不同类型物质,其对臭气中的乙酸、氨、苯乙烯、硫化氢、乙硫醇和乙硫醚的去除率分别达至96.17%、96.16%、92.11%、78%和83%,可用于控制污水处理厂、污泥处理厂、垃圾填埋场、粪便消纳站等工厂企业排放的臭气,解决臭味污染问题。